

	
3GPP TSG-SA4 Meeting #109e	S4-200933
[bookmark: _GoBack]Online, 20th May – 3rd June 2020 	revision of S4-200791
	CR-Form-v12.0

	CHANGE REQUEST

	

	
	TS 26.443
	CR
	32
	rev
	1
	Current version:
	14.3.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:	
	Corrections to EVS Floating-Point Source Code

	
	

	Source to WG:
	Ericsson LM, Fraunhofer IIS, VoiceAge Corporation

	Source to TSG:
	S4

	
	

	Work item code:
	EVS_Codec
	
	Date:
	2020-05-28

	
	
	
	
	

	Category:
	A
	
	Release:
	Rel-14

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	Correct issues as outlined in S4-200779:
· Handling of possible corrupt SID frames in AMR-WB IO/EVS modes
· Improvements in decoder robustness based on torture testing
· Usage of log10(0) in shb_DTX()
· Hardening of code
· Cleanup
· Editorial changes (Wrong commandline help)

	
	

	Summary of change:
	To overcome the above identified issues, the following changes are proposed:
1) Handling of possibly corrupt SID frames in AMR-WB IO/EVS decoder
In [2], two field issues related to the handling of possibly corrupt SID frames in the AMR-WB IO/EVS decoder were described. In the course of the investigations, the following issues were found:
· AMR-WB IO: All zero AMRWB SID_update results in a valid LP filter with extremely high LP-filter-gain
· For both, AMR-WB IO and EVS operating mode, especially corrupted SID frames might lead to instable behavior and eventually overshoots
· JBM: Bitstream-reading path was not in sync with the corresponding G.192 bitstream reading path. Further on, it was found that especially handling of AMRWB SID_first, AMRWB SID_update is not covered in the JBM path.

To overcome the identified issues, the following solutions are proposed:
· Special treatment of all-zero AMR-WB IO SID_update frames, to avoid overshoots: All zero AMRWB SID are treated as erroneous received and the decoder is switched to concealment mode for these frames.
· Various bugfixes on JBM path of bitstream reading to align with the G.192 bistream reading path. Note: As SID_first frames are not signalled in G.192 format (which the EVS network simulation and the corresponding JBM path is based upon), the reference code is not able to detect such frames are not actually correctly unless good zero length frames can be signalled.
· Added safety check for LP-CNG ISF/LSF decoding (EVS, AMR-WB IO) to avoid overshoots due to instable filter coefficients. This consists of two measures on decoder-side (applies to SID frames only):
· Limitation of the increment of the CNG energy index, to avoid sudden energy peaks

Impact:
· The above described changes affect TS 26.442, TS 26.443 and TS 26.452.
· The above described changes have no effect on the testvectors as contained in TS 26.444.

2) Wrong arithmetic in MSLVQ Encoder Module
During the development of 26.452, wrong arithmetic in the MSLVQ Encoder Module (function index_lvq_fx()) was discovered. A corresponding patch was already submitted as part of TS 26.452, but kept intentionally disabled, to keep TS 26.442 and TS 26.452 in sync. It is proposed to correct this now in both versions simultaneously.
Impact:
· The above described changes affect TS 26.442 and TS 26.452.
· The above described changes affect testvectors (encoder) as contained in TS 26.444.

3) Improvements in Decoder-Robustness based on Torture Testing
Additional Tests have been carried to test the decoder robustness, in particular under combined conditions of a) bitrate/bandwidth switching b) bit-errors c) frame-errors/JBM delay/error profiles. Several issues could be identified:
· Reading of uninitialized memory in EVS_RX_GetSamples() due to an unnecessary call of read_indices_from_djb_fx(). To overcome this issue it is proposed to remove this call.
· Reading of uninitialized memory at several decoder instances in combination with bitrate switching and channel-aware mode concealment: It was found out that partial redundancy concealment after an HQ-Core or TCX High-Bitrate frame can lead to reading of uninitialized memory in the concealment path. These scenarios can happen only after bitrate switching and loss of at least the first 13.2 kbit/s CAM frame. It is thus proposed to skip the partial redundancy payload for such cases in the concealment and continue the regular concealment until the first valid 13.2 kbit/s CAM frame is received.
· Potential division by 0 in find_best_delay(). It is proposed to add the same handling as in the fixed-point code. (floating-point code only)

Impact:
· The above described changes affect TS 26.442, TS 26.443 and TS 26.452.
· The above described changes have no effect on the testvectors as contained in TS 26.444.

4) Usage of log10(0) in shb_DTX()
During Testing it was found that log10(0) was occasionally used in shb_DTX() in the floating point source code, which might trigger a range error for certain implementations and which is certainly undesired. It is proposed to overcome this issue by addition a special handling of this situation in a similar manner as in the fixed-point code, i.e. by making sure that the affected variable is at least of value FLT_MIN.
Impact:
· The above described changes affect TS 26.443.
· The above described changes affect testvectors (encoder) as contained in TS 26.444.

5) Hardening of Code
Various places could be identified where either memory could be accessed (reading/writing) out of bounds, uninitialized memory was read or errors were not handled correctly:
· decision_matrix_dec(): Make sure, a valid "start_idx" in decision_matrix_dec() is set when the bitstream is corrupted by bit errors
· tcx_ltp_post(): Set gain of TCX LTP to zero, in case of active concealment and non-consistent LTP parameters (e.g. due to bitrate switching)
· dec_prm(): Add a safety check for corrupt bitstreams wrt the calculations in BITS_ALLOC_config_acelp()
· E_ACELP_codearithp(): Avoid buffer overflows in E_ACELP_codearithp() in case of corrupt input
· root_a_over_b(): A safety check for input variables of value “inf” was added, to avoid an endless loop (floating-point code only)
· speech_music_classif_fx(): Additional code was added to initialize the output variable *sp_aud_decision0; otherwise it might get read without initialization (but never evaluated).

Impact:
· The above described changes affect TS 26.442, TS 26.443, TS 26.452.
· The above described changes have no effect on the testvectors as contained in TS 26.444.

6) Cleanup
Further on, two smaller issues on code clean-up could be identified:
· The static memory synth_history[] was found to be dimensioned too big in the floating-point code. The proposed change brings the floating-point code inline with the fixed-point code.
· The function IGFCommonFuncsWriteSerialBit() was declared twice in prot.h. The second declaration was removed.

Impact:
· The above described changes affect TS 26.443.
· The above described changes have no effect on the testvectors as contained in TS 26.444.

7) Editorial Changes
Several improvements are proposed to commandline-help output related to MIME format
Impact:
· The above described changes affect TS 26.442, TS 26.443, TS 26.452.
· The above described changes have no effect on the testvectors as contained in TS 26.444.

	
	

	Consequences if not approved:
	Significant issues as already observed in the field.

	
	

	Clauses affected:
	c-code/EVS_cod.exe
c-code/EVS_dec.exe
c-code/lib_com/bitstream.c
c-code/lib_com/disclaimer.c
c-code/lib_com/prot.h
c-code/lib_com/tcx_ltp.c
c-code/lib_com/tools.c
c-code/lib_dec/EvsRXlib.c
c-code/lib_dec/FEC_HQ_core.c
c-code/lib_dec/cng_dec.c
c-code/lib_dec/dec_prm.c
c-code/lib_dec/decision_matrix_dec.c
c-code/lib_dec/evs_dec.c
c-code/lib_dec/io_dec.c
c-code/lib_dec/stat_dec.h
c-code/lib_enc/cng_enc.c
c-code/lib_enc/enc_acelp.c
c-code/lib_enc/io_enc.c
c-code/lib_enc/speech_music_classif.c
c-code/readme.txt

	
	

	
	Y
	N
	
	

	Other specs
	X
	
	 Other core specifications	
	TS 26.442 CR 0035

	affected:
	X
	
	 Test specifications
	TS 26.444 CR 0032

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	

	

	This CR's revision history:
	Rev. 1: Removed references to Rel. 17

Page 1

Start code change 1
diff -rwBu 26443-g00/c-code/lib_com/bitstream.c 26443-g10/c-code/lib_com/bitstream.c
--- 26443-g00/c-code/lib_com/bitstream.c	2018-11-11 09:21:54.000000000 +0100
+++ 26443-g10/c-code/lib_com/bitstream.c	2020-05-27 16:59:11.000000000 +0200
@@ -1186,6 +1186,22 @@
 sid_upd_bad = 1; /* this frame type may happen in ETSI/3GPP CS cases , a corrupt sid frames */
 }
 }
+ /* all zero indeces/bits iSP AMRWB SID_update results in a valid LP filter with extremely high LP-filter-gain */
+ /* all zero indeces/bits may be a result of CS bit errors and/or erroneously injected by gateways or by a bad dejitter handlers */
+ if (total_brate == SID_1k75 && sid_update == 1)
+ {
+ /* valid sid_update received, check for very risky but formally valid content */
+ short sum = 0;
+ for (k = 0; k < num_bits; ++k)
+ {
+ sum += (pt_stream[k] == G192_BIN1);/* check of 35 zeroes */
+ }
+ if(sum == 0)
+ {
+ /* all zeros */
+ sid_upd_bad = 1; /* initial signal as corrupt (BER likely) */
+ }
+ }

 /* AMRWB 26.173 G.192 file reader (read_serial) does not declare/use SID_BAD ft,
 it declares every bad synch marked frame initially as a lost_speech frame,
@@ -1526,7 +1542,22 @@
 st->bfi |= st->bit_stream[k] ; /* partity check of 35 zeroes, any single 1 gives BFI */
 }
 }
+ /* all zero bit SID_update results in a valid LP filter with extremely high LP-filter-gain */
+ /* all zero bits signal may be a result of CS bit errors or erronesouly injected by gateways or bad dejitter handlers */
+ if (sti == 1)
+ {
+ /*sid_update received */
+ Word16 sum = 0;
+ for (k = 0; k < 35; k++)
+ {
+ sum += st->bit_stream[k]; /* check of 35 zeroes */
+ }

+ if (sum == 0)
+ {
+ st->bfi = 1; /* eventually becomes SID_UPD_BAD */
+ }
+ }
 }

 /*add two zero bytes for arithmetic coder flush*/
@@ -2004,24 +2035,152 @@
 long total_brate;
 short bit0;

+
+ short curr_ft_good_sp, curr_ft_bad_sp;
+ short g192_sid_first, sid_upd_bad, sid_update;
+ short speech_bad, speech_lost;
+
+ st->bfi = 0;
 st->BER_detect = 0;
- bit0 = 0;
- /* There is no FRAME_NO_DATA or BAD frame indicator in RTP, frames are just missing.
- * In case of comfort noise handle missing frame as FRAME_NO_DATA, otherwise use PLC. */
- if(num_bits != 0)
+ st->mdct_sw_enable = 0;
+ st->mdct_sw = 0;
+ reset_indices_dec(st);
+
+ if (num_bits == 0)
 {
- st->bfi = 0;
- bit0 = ((*pt_stream & 0x80) != 0) ? G192_BIN1 : G192_BIN0;
+ st->bfi = 1;
 }
- else if(st->total_brate == SID_1k75 || st->total_brate == SID_2k40 ||
- st->total_brate == FRAME_NO_DATA)
+
+ /* convert the frame length to total bitrate */
+ total_brate = (long)(num_bits * 50);
+
+ /* handle SID_FIRST, SID_BAD, SPEECH_LOST, NO_DATA as properly as possible for the ITU-T G.192 format */
+
+ /* (total_brate, bfi , st_CNG) = rx_handler(received frame type, [previous frame type], past CNG state, past core) */
+ curr_ft_good_sp = 0;
+ curr_ft_bad_sp = 0;
+
+ if (total_brate > SID_2k40)
 {
- st->bfi = 0;
+ if (st->bfi == 0)
+ {
+ curr_ft_good_sp = 1;
 }
 else
 {
- st->bfi = 1;
+ curr_ft_bad_sp = 1;
 }
+ }
+ sid_update = 0;
+ sid_upd_bad = 0;
+
+ if (total_brate == SID_1k75 || total_brate == SID_2k40)
+ {
+ if (st->bfi == 0)
+ {
+ sid_update = 1;
+ }
+ else
+ {
+ sid_upd_bad = 1; /* this frame type may happen in ETSI/3GPP CS cases , a corrupt sid frames */
+ }
+ }
+
+ /* all zero indeces/bits iSP AMRWB SID_update results in a valid LP filter with extremely high LP-filter-gain */
+ /* all zero indeces/bits may be a result of CS bit errors and/or erroneously injected by gateways or by a bad dejitter handlers */
+ if (total_brate == SID_1k75 && sid_update == 1)
+ {
+ /* valid sid_update received, check for very risky but formally valid content */
+ short sum = 0;
+ for (k = 0; k < num_bits; ++k)
+ {
+ sum += (pt_stream[k / 8] >> (7 - (k % 8))) & 0x1; /* check of 35 zeroes */
+ }
+
+ if(sum == 0)
+ {
+ /* all zeros */
+ sid_upd_bad = 1; /* initial signal as corrupt */
+ }
+ }
+
+ /* AMRWB 26.173 G.192 file reader (read_serial) does not declare/use SID_BAD ft,
+ it declares every bad synch marked frame initially as a lost_speech frame,
+ and then the RXDTX handler CNG state decides the decoding mode CNG/SPEECH.
+ While In the AMRWB ETSI/3GPP format eid a CRC error in a detected SID_UPDATE frames triggers SID_BAD.
+
+ Here we inhibit use of the SID-length info, even though it is available in the G.192 file format after STL/EID-XOR.
+ */
+ if (sid_upd_bad)
+ {
+ sid_upd_bad = 0;
+ total_brate = FRAME_NO_DATA ; /* treat SID_BAD as a stolen signaling frame --> SPEECH LOST */
+ }
+
+ g192_sid_first = 0;
+ if (st->core == AMR_WB_CORE && st->prev_ft_speech && total_brate == FRAME_NO_DATA && st->bfi == 0)
+ {
+ g192_sid_first = 1; /* SID_FIRST detected for previous AMRWB/AMRWBIO active frames only */
+ /*
+ It is not possible to perfectly simulate rate switching conditions EVS->AMRWBIO where:
+ the very first SID_FIRST detection is based on a past EVS active frame
+ and a good length 0 "SID_FIRST"(NO_DATA) frame is sent in AMRWBIO,
+ , due to the one frame state memory in the AMRWB legacy G.192 SID_FIRST encoding
+ */
+ }
+
+ speech_bad = 0;
+ if (total_brate > SID_2k40 && st->bfi != 0) /* CS-type of CRC failure frame */
+ {
+ speech_bad = 1; /* initial ft assumption, CNG_state decides what to do */
+ }
+
+ speech_lost = 0;
+ if (total_brate == 0 && st->bfi != 0) /* unsent NO_DATA or stolen NO_DATA/signaling frame */
+ {
+ speech_lost = 1; /* initial ft assumption, CNG_state decides what to do */
+ }
+
+ /* Do not allow decoder to enter CNG-synthesis for any instantly received GOOD+LENGTH==0 frame
+ as this frame was never transmitted, one can not know it is good and has a a length of zero) */
+
+ if (st->CNG != 0)
+ {
+ /* We were in CNG synthesis */
+ if (curr_ft_good_sp != 0)
+ {
+ /* only a good speech frame makes you leave CNG synthesis */
+ st->CNG = 0;
+ }
+ }
+ else
+ {
+ /* We were in SPEECH synthesis */
+ /* only a received/detected SID frame can make the decoder enter into CNG synthsis */
+ if (g192_sid_first || sid_update || sid_upd_bad)
+ {
+ st->CNG = 1;
+ }
+ }
+
+ /* set bfi, total_brate pair for proper decoding */
+ /* handle the G.192 _simulated_ untransmitted NO_DATA frame, setting for decoder SPEECH synthesis */
+ if ((st->CNG == 0) && (total_brate == 0 && st->bfi == 0))
+ {
+ st->bfi= 1; /* SPEECH PLC code will now become active as in a real system */
+ /* total_brate= 0 */
+ }
+
+ /* handle bad/lost speech frame(and CS bad sid frame) in the decoders CNG synthesis settings pair (total_brate, bfi) */
+ if (((st->CNG != 0) && ((speech_bad != 0) || (speech_lost != 0))) || /* SP_BAD or SPEECH_LOST) --> stay in CNG */
+ (sid_upd_bad != 0)) /* SID_UPD_BAD --> start CNG */
+ {
+ st->bfi = 0; /* bfi=0 needed to activate CNG code */
+ total_brate = 0;
+ }
+ /* update for next frame's G.192 file format's odd SID_FIRST detection (primarily for AMRWBIO) */
+ st->prev_ft_speech = ((curr_ft_good_sp != 0) || (curr_ft_bad_sp != 0));
+
 if(partialframe || st->prev_use_partial_copy)
 {
 st->next_coder_type = next_coder_type;
@@ -2031,20 +2190,26 @@
 st->next_coder_type = INACTIVE;
 }

- st->mdct_sw_enable = 0;
- st->mdct_sw = 0;
- reset_indices_dec(st);
- total_brate = num_bits * 50;
-
 if(partialframe == 1)
 {
 st->bfi = 2;
 }
+
+ bit0 = num_bits ? (((pt_stream[0] >> 7) & 0x1) ? G192_BIN1 : G192_BIN0) : 0;
+
 if (st->bfi != 1)
 {
 /* select Mode 1 or Mode 2 */
 decoder_selectCodec(st, total_brate, bit0);

+ /* for an incorrect total_brate, function decoder_selectCodec can set st->bfi to 1 and keep an incorrect total_brate, */
+ }
+
+ num_bits = total_brate/50; /* recalc in case total_brate was set to a zeroed good frame by RXDTX handler logic */
+ assert(num_bits*50 == total_brate); /* only rates matching 20 ms frames are possible */
+
+ if (st->bfi != 1)
+ {
 /* convert bitstream from compact bytes to short values and store it in decoder state */
 bit_stream_ptr = st->bit_stream;
 for(k = 0; k < num_bits; k++)
diff -rwBu 26443-g00/c-code/lib_com/disclaimer.c 26443-g10/c-code/lib_com/disclaimer.c
--- 26443-g00/c-code/lib_com/disclaimer.c	2018-11-11 09:21:54.000000000 +0100
+++ 26443-g10/c-code/lib_com/disclaimer.c	2020-05-27 16:59:11.000000000 +0200
@@ -9,9 +9,10 @@
 int print_disclaimer(FILE *fPtr)
 {

- fprintf(fPtr, "\n===\n");
- fprintf(fPtr, " EVS Codec (Floating Point) 3GPP TS26.443 Nov 13, 2018. Version 12.11.0 / 13.7.0 / 14.3.0 / 15.1.0\n");
- fprintf(fPtr, "===\n\n\n");
+ fprintf(fPtr, "\n===\n");
+ fprintf(fPtr, " EVS Codec (Floating Point) 3GPP TS26.443 May 28, 2020.\n");
+ fprintf(fPtr, " Version 12.12.0 / 13.8.0 / 14.4.0 / 15.2.0 / 16.1.0\n");
+ fprintf(fPtr, "===\n\n\n");

 return 0;
 }
diff -rwBu 26443-g00/c-code/lib_com/prot.h 26443-g10/c-code/lib_com/prot.h
--- 26443-g00/c-code/lib_com/prot.h	2018-11-11 09:21:54.000000000 +0100
+++ 26443-g10/c-code/lib_com/prot.h	2020-05-27 16:59:11.000000000 +0200
@@ -9700,11 +9700,6 @@
 int bit /**< in: | value of bit */
);

-void IGFCommonFuncsWriteSerialBit(
- void *st, /**< in: | encoder/decoder state structure */
- int *pBitOffset, /**< out: | bit offset */
- int bit /**< in: | value of bit */
-);

 void IGFSCFEncoderOpen(
 IGFSCFENC_INSTANCE_HANDLE hPublicData, /**< inout: handle to public data */
diff -rwBu 26443-g00/c-code/lib_com/tcx_ltp.c 26443-g10/c-code/lib_com/tcx_ltp.c
--- 26443-g00/c-code/lib_com/tcx_ltp.c	2018-11-11 09:21:54.000000000 +0100
+++ 26443-g10/c-code/lib_com/tcx_ltp.c	2020-05-27 16:59:11.000000000 +0200
@@ -615,11 +615,16 @@
 {
 /* PLC: [TCX: Fade-out]
 * PLC: LTP and bad frame (concealment) */
-
+ if (pitres == *pitres_past) /* ensure consistent core SR to previous frame; otherwise, set gain to 0 */
+ {
 pitch_int = *pitch_int_past;
 pitch_fr = *pitch_fr_past;
 gain = *gain_past * damping;
- pitres = *pitres_past;
+ }
+ else
+ {
+ gain = 0.f;
+ }
 }

 if (SideInfoOnly)
diff -rwBu 26443-g00/c-code/lib_com/tools.c 26443-g10/c-code/lib_com/tools.c
--- 26443-g00/c-code/lib_com/tools.c	2018-11-11 09:21:54.000000000 +0100
+++ 26443-g10/c-code/lib_com/tools.c	2020-05-27 16:59:11.000000000 +0200
@@ -1327,6 +1327,14 @@
 {
 return 0.0;
 }
+ if (isinf(a))
+ {
+ return FLT_MAX;
+ }
+ if (isinf(b))
+ {
+ return 0.f;
+ }

 a += 0x00000001;
 b += 0x00000001;
diff -rwBu 26443-g00/c-code/lib_dec/EvsRXlib.c 26443-g10/c-code/lib_dec/EvsRXlib.c
--- 26443-g00/c-code/lib_dec/EvsRXlib.c	2018-11-11 09:21:52.000000000 +0100
+++ 26443-g10/c-code/lib_dec/EvsRXlib.c	2020-05-27 16:59:10.000000000 +0200
@@ -266,10 +266,6 @@
 /* initialize, since this is needed within read_indices_from_djb, to correctly set st->last_codec_mode */
 st->ini_frame = 0;
 st->prev_use_partial_copy = 0;
- /* initialize st->last_codec_mode, since this is needed for init_decoder() */
- read_indices_from_djb(st, dataUnit->data, dataUnit->dataSize, 0, 0);
-
- assert(st->codec_mode != 0);
 init_decoder(st);
 /* parse frame again because init_decoder() overwrites st->total_brate */
 read_indices_from_djb(st, dataUnit->data, dataUnit->dataSize, 0, 0);
diff -rwBu 26443-g00/c-code/lib_dec/FEC_HQ_core.c 26443-g10/c-code/lib_dec/FEC_HQ_core.c
--- 26443-g00/c-code/lib_dec/FEC_HQ_core.c	2018-11-11 09:21:52.000000000 +0100
+++ 26443-g10/c-code/lib_dec/FEC_HQ_core.c	2020-05-27 16:59:10.000000000 +0200
@@ -637,7 +637,14 @@
 d1m *= delta;

+ if(min_sq_cross <= 0.f || min_corr <= 0.f)
+ {
+ accA = 0.f;
+ }
+ else
+ {
 accA = min_sq_cross/min_corr;
+ }
 if(accA < 0.5 || accA > 1.5)
 {
 *false_flag = 1;
diff -rwBu 26443-g00/c-code/lib_dec/cng_dec.c 26443-g10/c-code/lib_dec/cng_dec.c
--- 26443-g00/c-code/lib_dec/cng_dec.c	2018-11-11 09:21:52.000000000 +0100
+++ 26443-g10/c-code/lib_dec/cng_dec.c	2020-05-27 16:59:10.000000000 +0200
@@ -57,6 +57,7 @@
 float env[NUM_ENV_CNG];
 float tmp_env[HO_HIST_SIZE*NUM_ENV_CNG];
 short LSF_Q_prediction; /* o : LSF prediction mode - just temporary variable in CNG */
+ short tmp1;

 /*---*
 * Decode CNG spectral envelope (only in SID frame)
@@ -117,6 +118,17 @@
 /* decode the energy index */
 enr_index = (short) get_next_indice(st, num_bits);

+ tmp1 = st->old_enr_index + 20;
+ if ((enr_index > tmp1) && (st->old_enr_index >= 0)) /* Likely bit error , and not startup */
+ {
+ enr_index = tmp1;
+ enr_index = min(enr_index, 127);
+ if (st->Opt_AMR_WB != 0)
+ {
+ enr_index = min(enr_index, 63);
+ }
+ }
+
 if (st->last_core_brate > SID_2k40 &&
 st->first_CNG != 0 &&
 st->old_enr_index >= 0 &&
diff -rwBu 26443-g00/c-code/lib_dec/dec_prm.c 26443-g10/c-code/lib_dec/dec_prm.c
--- 26443-g00/c-code/lib_dec/dec_prm.c	2018-11-11 09:21:52.000000000 +0100
+++ 26443-g10/c-code/lib_dec/dec_prm.c	2020-05-27 16:59:10.000000000 +0200
@@ -462,7 +462,12 @@
 acelp_target_bits = st->bits_frame_core - bits_common;

 /*Configure ACELP*/
- BITS_ALLOC_config_acelp(acelp_target_bits, *coder_type, &(st->acelp_cfg), st->narrowBand, st->nb_subfr);
+ tmp = BITS_ALLOC_config_acelp(acelp_target_bits, *coder_type, &(st->acelp_cfg), st->narrowBand, st->nb_subfr);
+ if(tmp < 0)
+ {
+ /* erroneous configuration, resulting from a corrupt bitstream */
+ st->BER_detect = 1;
+ }

 /* Adaptive BPF (2 bits)*/
@@ -537,11 +542,16 @@
 }
 else if (st->rf_frame_type >= RF_ALLPRED && st->use_partial_copy)
 {
- BITS_ALLOC_config_acelp(st->rf_target_bits, /* target bits ranges from 56 to 72 depending on rf_type */
+ tmp = BITS_ALLOC_config_acelp(st->rf_target_bits, /* target bits ranges from 56 to 72 depending on rf_type */
 st->rf_frame_type, /* already offset by 4 to parse the config elements for partial copy */
 &(st->acelp_cfg), /* acelp_cfg_rf*/
 0, /* is narrowBand */
 st->nb_subfr);
+ if (tmp < 0)
+ {
+ /* erroneous configuration, resulting from a corrupt bitstream */
+ st->BER_detect = 1;
+ }

 /* rf_frame_type NELP: 7 */
 if(st->rf_frame_type == RF_NELP)
diff -rwBu 26443-g00/c-code/lib_dec/decision_matrix_dec.c 26443-g10/c-code/lib_dec/decision_matrix_dec.c
--- 26443-g00/c-code/lib_dec/decision_matrix_dec.c	2018-11-11 09:21:52.000000000 +0100
+++ 26443-g10/c-code/lib_dec/decision_matrix_dec.c	2020-05-27 16:59:10.000000000 +0200
@@ -183,7 +183,7 @@
 if(start_idx >= MAX_ACELP_SIG)
 {
 st->BER_detect = 1;
- start_idx--;
+ start_idx = 0;
 break;
 }
 }
diff -rwBu 26443-g00/c-code/lib_dec/evs_dec.c 26443-g10/c-code/lib_dec/evs_dec.c
--- 26443-g00/c-code/lib_dec/evs_dec.c	2018-11-11 09:21:52.000000000 +0100
+++ 26443-g10/c-code/lib_dec/evs_dec.c	2020-05-27 16:59:10.000000000 +0200
@@ -134,6 +134,16 @@
 st->core = ACELP_CORE;
 }

+ /* if previous frame was HQ Core/TCX10/TCX20 (high bitrate), drop partial copy info and continue HQ Core/TCX10/TCX20 concealment */
+ if(st->use_partial_copy && (st->last_core == HQ_CORE || st->last_core == TCX_10_CORE || (st->last_core == TCX_20_CORE && getTcxonly(st->last_total_brate))))
+ {
+ st->bfi = 1;
+ st->codec_mode = st->last_codec_mode;
+ frameMode = FRAMEMODE_MISSING;
+ st->use_partial_copy = 0;
+ st->core = st->last_core;
+ }
+
 /*--*
 * Decoding
 ---/
diff -rwBu 26443-g00/c-code/lib_dec/io_dec.c 26443-g10/c-code/lib_dec/io_dec.c
--- 26443-g00/c-code/lib_dec/io_dec.c	2018-11-11 09:21:52.000000000 +0100
+++ 26443-g10/c-code/lib_dec/io_dec.c	2020-05-27 16:59:10.000000000 +0200
@@ -402,7 +402,7 @@
 fprintf(stdout, " (HI|LO) and optimal FEC offset. \n");

 fprintf(stdout, "-mime : Mime bitstream file format\n");
- fprintf(stdout, " The decoder may read both TS26.445 Annex.2.6 and RFC4867 Mime Storage\n");
+ fprintf(stdout, " The decoder may read both TS26.445 Annex A.2.6 and RFC4867 Mime Storage\n");
 fprintf(stdout, " Format files, the magic word in the mime file is used to determine\n");
 fprintf(stdout, " which of the two supported formats is in use.\n");
 fprintf(stdout, " default bitstream file format is G.192\n");
diff -rwBu 26443-g00/c-code/lib_dec/stat_dec.h 26443-g10/c-code/lib_dec/stat_dec.h
--- 26443-g00/c-code/lib_dec/stat_dec.h	2018-11-11 09:21:52.000000000 +0100
+++ 26443-g10/c-code/lib_dec/stat_dec.h	2020-05-27 16:59:10.000000000 +0200
@@ -537,7 +537,7 @@
 * HQ core parameters
 --/

- float synth_history[L_FRAME48k+OLD_SYNTH_SIZE_DEC+NS2SA(48000, PH_ECU_LOOKAHEAD_NS)]; /* unified synthesis memory */
+ float synth_history[L_PROT48k + L_FRAME_MAX]; /* unified synthesis memory */
 float *old_synthFB;
 float old_out[L_FRAME48k]; /* HQ core - previous synthesis for OLA */

diff -rwBu 26443-g00/c-code/lib_enc/cng_enc.c 26443-g10/c-code/lib_enc/cng_enc.c
--- 26443-g00/c-code/lib_enc/cng_enc.c	2018-11-11 09:21:54.000000000 +0100
+++ 26443-g10/c-code/lib_enc/cng_enc.c	2020-05-27 16:59:11.000000000 +0200
@@ -916,7 +916,7 @@
 mvr2r(shb_speech, shb_new_speech, L_FRAME16k);
 mvr2r(shb_old_speech + L_FRAME16k, st->old_speech_shb, (L_LOOK_12k8 + L_SUBFR) * 5/4);

- shb_ener = 0;
+ shb_ener = FLT_MIN * L_FRAME16k;
 for (i=0; i<L_FRAME16k; i++)
 {
 shb_ener += shb_old_speech[i] * shb_old_speech[i];
diff -rwBu 26443-g00/c-code/lib_enc/enc_acelp.c 26443-g10/c-code/lib_enc/enc_acelp.c
--- 26443-g00/c-code/lib_enc/enc_acelp.c	2018-11-11 09:21:52.000000000 +0100
+++ 26443-g10/c-code/lib_enc/enc_acelp.c	2020-05-27 16:59:10.000000000 +0200
@@ -1300,11 +1300,15 @@
 pos[posno] = t;
 sig[posno] = tmp;
 posno++;
- if (posno > 9)
+ if (posno >= 9)
 {
- assert(0);
+ break;
 }
 }
+ if (posno >= 9)
+ {
+ break;
+ }
 }
 *p = posno;

diff -rwBu 26443-g00/c-code/lib_enc/io_enc.c 26443-g10/c-code/lib_enc/io_enc.c
--- 26443-g00/c-code/lib_enc/io_enc.c	2018-11-11 09:21:54.000000000 +0100
+++ 26443-g10/c-code/lib_enc/io_enc.c	2020-05-27 16:59:11.000000000 +0200
@@ -1000,7 +1000,7 @@
 fprintf(stdout, "-no_delay_cmp : Turn off delay compensation\n");

 fprintf(stdout, "-mime : Mime output bitstream file format\n");
- fprintf(stdout, " The encoder produces TS26.445 Annex.2.6 Mime Storage Format, (not RFC4867 Mime Format).\n");
+ fprintf(stdout, " The encoder produces TS26.445 Annex A.2.6 Mime Storage Format, (not RFC4867 Mime Format).\n");
 fprintf(stdout, " default output bitstream file format is G.192\n");
 fprintf(stdout, "\n");

diff -rwBu 26443-g00/c-code/lib_enc/speech_music_classif.c 26443-g10/c-code/lib_enc/speech_music_classif.c
--- 26443-g00/c-code/lib_enc/speech_music_classif.c	2018-11-11 09:21:54.000000000 +0100
+++ 26443-g10/c-code/lib_enc/speech_music_classif.c	2020-05-27 16:59:11.000000000 +0200
@@ -172,6 +172,11 @@
 }

 }
+ else
+ {
+ *sp_aud_decision0 = *sp_aud_decision1;
+ }
+

 return;
 }
diff -rwBu 26443-g00/c-code/readme.txt 26443-g10/c-code/readme.txt
--- 26443-g00/c-code/readme.txt	2019-12-03 10:03:46.000000000 +0100
+++ 26443-g10/c-code/readme.txt	2020-05-27 16:59:11.000000000 +0200
@@ -65,7 +65,7 @@
 attachments.

 Encoder: With the "-mime" option, the encoder always produces EVS-mime storage
-format specified in TS26.445 Annex.2.6. The AMRWB-mime(RFC4867) storage
+format specified in TS26.445 Annex A.2.6. The AMRWB-mime(RFC4867) storage
 format is not supported by the encoder.

 Decoder: With the "-mime" option, the decoder can parse both EVS-mime
@@ -149,7 +149,7 @@
 "nb_frames B"
 -no_delay_cmp : Turn off delay compensation
 -mime : Mime output bitstream file format
- The encoder produces TS26.445 Annex.2.6 Mime Storage Format, (not RFC4867 Mime Format).
+ The encoder produces TS26.445 Annex A.2.6 Mime Storage Format, (not RFC4867 Mime Format).
 default output bitstream file format is G.192

 The usage of the "EVS_dec" program is as follows:
@@ -177,7 +177,7 @@
 -Tracefile TF : Generate trace file named TF (used only when -VOIP is activated)
 -no_delay_cmp : Turn off delay compensation
 -mime : Mime bitstream file format
- The decoder may read both TS26.445 Annex.2.6 and RFC4867 Mime Storage
+ The decoder may read both TS26.445 Annex A.2.6 and RFC4867 Mime Storage
 Format files, the magic word in the mime file is used to determine
 which of the two supported formats is in use.
 default bitstream file format is G.192

End code change 1

